ST源码分析-前言 - C语言音视频技术

/ 0评 / 2

ST 是 state-thread 的缩写。state-thread 是一个 C 语言实现的协程库,这个库是 8年前的, 《state-thread 官网文档》

ST 协程优势有以下几点:

1,从性能上来说,ST和传统的EDSM实现几乎一样快。也就是用 ST 跟用 单线程 epoll 一样高效。

2,在内存方面,ST几乎和传统的EDSM一样高效。也就是用 ST 跟用 epoll 一样高效。

3,因为单线程非阻塞 epoll 的架构 会把 请求回调 分离,这种 请求回调 分离 的架构 ,这个架构在复杂业务下可能会导致回调地狱的问题。伪代码如下:

dns_udp_data_1 = {xxx}
sendto(dns_udp_data_1)
dns_udp_data_2 = {xxx}
sendto(dns_udp_data_2)
dns_udp_data_3 = {xxx}
sendto(dns_udp_data_3)
​
while(){
    //等待 3 个udp fd
    epoll_wait();
    //处理状态改变的fd
    recvfrom(fd);
    //处理 dns 响应
}

从上面的伪代码可以看到,单线程非阻塞如果不用协程,语法上,请求跟 回调 处理是分开的,比较容易的理解语法应该是 一个 sendto 然后一个 recvfrom,处理完一个任务再执行另一个任务。

使用了 state-thread 就可以合并 sendto 跟 recvfrom, st_sendto() 会阻塞在 st_recvfrom(),但并不是真正的阻塞,而是把 fd 丢进去全局管理器之后,就切换到其他协程执行,因此 st_recvfrom() 并不像 操作系统的 recvform() 一样,会阻塞线程的其他任务。在 ST 里面 阻塞 本质上就是切换上下文,当所有协程都执行完,idle协程就会 epoll_wait() 等待 所有fd 的变化,这里才是真正的阻塞。fd 有变化了,再切换回去之前的 st_recvfrom() 继续执行。

这样就能把 请求 ,对面的respond (回调)合在一起,顺序处理,代码看起来是顺序的。这样 实现 RTMP 这种复杂协议,因为是顺序的,所以写起来就比 epoll 简单很多。



但是我客观说一下,协程方案每次 st_sendto()st_recvfrom() 之后都会经历一次上下文切换,这个上下文切换大概会执行10多条汇编指令。所以协程方案 做多域名DNS查询 比上面的伪代码执行速度是慢一些的,因为上面的伪代码,3 个 sendto 是线性执行,没有上下文切换。

而且多个协程因为是在单线程里面运行的,所以他们并不是并行的,也就是多个协程操作全局变量不用加锁,这是优势,也是劣势。

单线程多协程开了很多协程处理不同的任务的时候,会非常影响实时性。因为如果多个推流协程跟多个播放线程都在一个线程里面,推流协程有数据了,解复用完了处理完了,是不是应该尽快激活播放协程来处理这个数据?但是如果上下文切换到 播放协程来推送数据到客户端,那推流协程就会阻塞停下来,但是推流客户端不是只推一个包,是有源源不断的数据推送来的。而且如果有多个推流客户端 epoll_wait() 不一定激活的第一个fd 就是 播放端的fd,可能是另一个推流客户端的fd,这样实时性会再打折扣。

解决方案可以这样,开一个线程处理多个推流客户端,开另一个线程处理多个播放客户端。线程里面用多协程。

把相同的任务丢进去一个线程,例如推流端,全部丢进去一个线程,播放端放在另一个线程。线程里面都是多协程,这样就能提高实时性。


虽然上面的代码,DNS查询,不用协程,程序会快一些,这是单线程的情况,如果是复杂系统,多线程,不用协程也会导致上下文切换。举个例子,常见的服务器是这样的,线程A 阻塞在 epoll_wait(),另一个线程B 阻塞在条件变量,线程A激活之后,读到信息,激活线程B去处理,这就有可能导致上下文切换,如果两个线程在不同的核心就不会导致切换。但是协程的情况也是这样,epoll_wait() 之后切换上下文,这是协程的切换上下文是自己做的。

所以在复杂系统下,多线程+多协程 VS 多线程回调,我个人认为还是多线程+多协程高明一些,只要把不同的任务分开线程处理,就能并行,提高实时性。比回调写法简单明了很多,因为客户端足够多的时候,两种场景都会有上下文切换的损耗。

如果不用协程,当业务遇到阻塞操作,例如需要查一下数据库,只能阻塞,等查到再继续跑,但是线程池的线程数量是有限的,一个线程阻塞了,要处理更多的请求怎么办?只能再开更多的线程,开更多的线程了,比CPU核数都多了,上下文切换就会更加厉害。最后只能在阻塞时间跟线程数量上做一个权衡。

但是用协程,遇到阻塞操作,就能把协程切走,去执行别的任务。这种协程的创建跟上下文切换,比线程的创建跟上下文切换要廉价很多。

上面说到的查数据库,本身会阻塞线程,除非自己用 st_read 实现一个数据库通信类,如果用操作系统的 read,本身是会阻塞。简单一点可以开另领一个线程专门处理数据库查询,然后业务线程与数据库线程通过 ST 的 fd 进行通信。例如业务线程用 pipe 创建两个fd,read fd 业务线程自己用,数据库线程查询到数据之后写入 write fd,那业务协程就会被激活。业务线程跟数据库线程之间通过管道fd通信。

代码如下:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
int sig_pipe[2];
​
//线程执行的函数
void * sql_read(void *args) {
    int res;
    while (1){
        int data = 0;
        read(sig_pipe[0],&data,sizeof(data));
        printf("read success = %d\n", data);
​
        sleep(2);
        printf("sleep 2 \n");
        //最终将互斥锁解锁
    }
​
    return NULL;
}
//线程执行的函数
void * sql_send(void *args) {
    int res;
    int data = 5;
    write(sig_pipe[1],&data,sizeof(data));
    int data2 = 9;
    write(sig_pipe[1],&data2,sizeof(data2));
​
    sleep(10);
    return NULL;
}
int main() {
    pipe(sig_pipe);
​
    int res;
    pthread_t mythread1, mythread2;
    res = pthread_create(&mythread1, NULL, sql_read, NULL);
    if (res != 0) {
        printf("mythread1线程创建失败\n");
        return 0;
    }
    res = pthread_create(&mythread2, NULL, sql_send, NULL);
    if (res != 0) {
        printf("mythread2线程创建失败\n");
        return 0;
    }
    //等待 mythread1 线程执行完成
    res = pthread_join(mythread1, NULL);
    if (res != 0) {
        printf("1:等待线程失败\n");
    }
    //等待 mythread2 线程执行完成
    res = pthread_join(mythread2, NULL);
    if (res != 0) {
        printf("2:等待线程失败\n");
    }
    return 0;
}

与 state-thread 类似的 C/C++ 协程库有以下几个:

  1. libco ,腾讯出的。
  2. libgo,国人出的。
  3. acl ,功能很多的协程库。

杨成立 在 issue 里面放了几篇 st-thread 库的分析 文章

  1. 《state-threads代码分析》
  2. 《MSG_ZEROCOPY 在 st 上的应用》
  3. 《如何让 st 支持多线程》
  4. 《协程原理:函数调用过程、参数和寄存器》

由于笔者的水平有限, 加之编写的同时还要参与开发工作,文中难免会出现一些错误或者不准确的地方,恳请读者批评指正。如果读者有任何宝贵意见,可以加我微信 Loken1。QQ:2338195090。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注